School of Engineering, RMIT University, Melbourne, Australia
Abstract:Assisting non-expert users to develop complex interactive websites has become a popular task for LLM-powered code agents. However, existing code agents tend to only generate frontend web pages, masking the lack of real full-stack data processing and storage with fancy visual effects. Notably, constructing production-level full-stack web applications is far more challenging than only generating frontend web pages, demanding careful control of data flow, comprehensive understanding of constantly updating packages and dependencies, and accurate localization of obscure bugs in the codebase. To address these difficulties, we introduce FullStack-Agent, a unified agent system for full-stack agentic coding that consists of three parts: (1) FullStack-Dev, a multi-agent framework with strong planning, code editing, codebase navigation, and bug localization abilities. (2) FullStack-Learn, an innovative data-scaling and self-improving method that back-translates crawled and synthesized website repositories to improve the backbone LLM of FullStack-Dev. (3) FullStack-Bench, a comprehensive benchmark that systematically tests the frontend, backend and database functionalities of the generated website. Our FullStack-Dev outperforms the previous state-of-the-art method by 8.7%, 38.2%, and 15.9% on the frontend, backend, and database test cases respectively. Additionally, FullStack-Learn raises the performance of a 30B model by 9.7%, 9.5%, and 2.8% on the three sets of test cases through self-improvement, demonstrating the effectiveness of our approach. The code is released at https://github.com/mnluzimu/FullStack-Agent.
Abstract:Deep generative models for engineering design often require substantial computational cost, large training datasets, and extensive retraining when design requirements or datasets change, limiting their applicability in real-world engineering design workflow. In this work, we propose a zero-shot generation framework for parametric engineering design based on TabPFN, enabling conditional design generation using only a limited number of reference samples and without any task-specific model training or fine-tuning. The proposed method generates design parameters sequentially conditioned on target performance indicators, providing a flexible alternative to conventional generative models. The effectiveness of the proposed approach is evaluated on three engineering design datasets, i.e., ship hull design, BlendedNet aircraft, and UIUC airfoil. Experimental results demonstrate that the proposed method achieves competitive diversity across highly structured parametric design spaces, remains robust to variations in sampling, resolution and parameter dimensionality of geometry generation, and achieves a low performance error (e.g., less than 2% in generated ship hull designs' performance). Compared with diffusion-based generative models, the proposed framework significantly reduces computational overhead and data requirements while preserving reliable generation performance. These results highlight the potential of zero-shot, data-efficient generation as a practical and efficient tool for engineering design, enabling rapid deployment, flexible adaptation to new design settings, and ease of integration into real-world engineering workflows.
Abstract:This paper presents a RePaint-enhanced framework that integrates a pre-trained performance-guided denoising diffusion probabilistic model (DDPM) for performance- and parameter-constraint engineering design generation. The proposed method enables the generation of missing design components based on a partial reference design while satisfying performance constraints, without retraining the underlying model. By applying mask-based resampling during inference process, RePaint allows efficient and controllable repainting of partial designs under both performance and parameter constraints, which is not supported by conventional DDPM-base methods. The framework is evaluated on two representative design problems, parametric ship hull design and airfoil design, demonstrating its ability to generate novel designs with expected performance based on a partial reference design. Results show that the method achieves accuracy comparable to or better than pre-trained models while enabling controlled novelty through fixing partial designs. Overall, the proposed approach provides an efficient, training-free solution for parameter-constraint-aware generative design in engineering applications.
Abstract:Reinforcement Learning (RL) has become essential for eliciting complex reasoning capabilities in Large Language Models (LLMs). However, the substantial memory overhead of storing Key-Value (KV) caches during long-horizon rollouts acts as a critical bottleneck, often prohibiting efficient training on limited hardware. While existing KV compression techniques offer a remedy for inference, directly applying them to RL training induces a severe policy mismatch, leading to catastrophic performance collapse. To address this, we introduce Sparse-RL empowers stable RL training under sparse rollouts. We show that instability arises from a fundamental policy mismatch among the dense old policy, the sparse sampler policy, and the learner policy. To mitigate this issue, Sparse-RL incorporates Sparsity-Aware Rejection Sampling and Importance-based Reweighting to correct the off-policy bias introduced by compression-induced information loss. Experimental results show that Sparse-RL reduces rollout overhead compared to dense baselines while preserving the performance. Furthermore, Sparse-RL inherently implements sparsity-aware training, significantly enhancing model robustness during sparse inference deployment.
Abstract:The rapid evolution of Large Language Models (LLMs) has fostered diverse paradigms for automated slide generation, ranging from code-driven layouts to image-centric synthesis. However, evaluating these heterogeneous systems remains challenging, as existing protocols often struggle to provide comparable scores across architectures or rely on uncalibrated judgments. In this paper, we introduce SlidesGen-Bench, a benchmark designed to evaluate slide generation through a lens of three core principles: universality, quantification, and reliability. First, to establish a unified evaluation framework, we ground our analysis in the visual domain, treating terminal outputs as renderings to remain agnostic to the underlying generation method. Second, we propose a computational approach that quantitatively assesses slides across three distinct dimensions - Content, Aesthetics, and Editability - offering reproducible metrics where prior works relied on subjective or reference-dependent proxies. Finally, to ensure high correlation with human preference, we construct the Slides-Align1.5k dataset, a human preference aligned dataset covering slides from nine mainstream generation systems across seven scenarios. Our experiments demonstrate that SlidesGen-Bench achieves a higher degree of alignment with human judgment than existing evaluation pipelines. Our code and data are available at https://github.com/YunqiaoYang/SlidesGen-Bench.
Abstract:Large language models are increasingly applied to various development scenarios. However, in on-chain transaction scenarios, even a minor error can cause irreversible loss for users. Existing evaluations often overlook execution accuracy and safety. We introduce EVM-QuestBench, an execution-grounded benchmark for natural-language transaction-script generation on EVM-compatible chains. The benchmark employs dynamic evaluation: instructions are sampled from template pools, numeric parameters are drawn from predefined intervals, and validators verify outcomes against these instantiated values. EVM-QuestBench contains 107 tasks (62 atomic, 45 composite). Its modular architecture enables rapid task development. The runner executes scripts on a forked EVM chain with snapshot isolation; composite tasks apply step-efficiency decay. We evaluate 20 models and find large performance gaps, with split scores revealing persistent asymmetry between single-action precision and multi-step workflow completion. Code: https://anonymous.4open.science/r/bsc_quest_bench-A9CF/.
Abstract:This paper investigates mutual coupling between phase-dependent amplitudes (PDAs) and designed phase shifts within pixels of near-field (NF) reconfigurable intelligent surfaces (RISs) in the presence of phase errors (PEs). In contrast to existing research that treats phase shifts with errors (PSEs) and the PDAs separately, we introduce a remaining power (RP) metric to quantify the proportion of power preserved in the signals reflected by the RIS, and we prove its asymptotic convergence to theoretical values by leveraging extended Glivenko-Cantelli theorem. Then, the RP of signals passing through RIS pixels is jointly examined under combined phase and amplitude uncertainties. In addition, we propose four pixel reflection models to capture practical conditions, and we derive approximate polynomial upper bounds for the RP with error terms by applying Taylor expansion. Furthermore, based on Friis transmission formula and projected aperture, we propose a general NF channel model that incorporates the coupling between the PSEs and the PDAs. By using Cauchy-Bunyakovsky-Schwarz inequality and Riemann sums, we derive a closed-form upper bound on spectral efficiency, and the bound becomes tighter as the pixel area decreases. We reveal that as the RIS phase shifts approach the ends of their range, the RP under independent and identically distributed PEs is smaller than that under fully correlated PEs, whereas this relationship reverses when the phase shifts are near the middle of their range. Neglecting the PEs in the PDAs leads to an overestimation of the RIS performance gain, explaining the discrepancies between theoretical and measured results.
Abstract:Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.
Abstract:Automated essay scoring (AES) is a challenging task in cross-prompt settings due to the diversity of scoring criteria. While previous studies have focused on the output of large language models (LLMs) to improve scoring accuracy, we believe activations from intermediate layers may also provide valuable information. To explore this possibility, we evaluated the discriminative power of LLMs' activations in cross-prompt essay scoring task. Specifically, we used activations to fit probes and further analyzed the effects of different models and input content of LLMs on this discriminative power. By computing the directions of essays across various trait dimensions under different prompts, we analyzed the variation in evaluation perspectives of large language models concerning essay types and traits. Results show that the activations possess strong discriminative power in evaluating essay quality and that LLMs can adapt their evaluation perspectives to different traits and essay types, effectively handling the diversity of scoring criteria in cross-prompt settings.
Abstract:Role-playing agents (RPAs) must simultaneously master many conflicting skills -- following multi-turn instructions, exhibiting domain knowledge, and adopting a consistent linguistic style. Existing work either relies on supervised fine-tuning (SFT) that over-fits surface cues and yields low diversity, or applies reinforcement learning (RL) that fails to learn multiple dimensions for comprehensive RPA optimization. We present MOA (Multi-Objective Alignment), a reinforcement-learning framework that enables multi-dimensional, fine-grained rubric optimization for general RPAs. MOA introduces a novel multi-objective optimization strategy that trains simultaneously on multiple fine-grained rubrics to boost optimization performance. Besides, to address the issues of model output diversity and quality, we have also employed thought-augmented rollout with off-policy guidance. Extensive experiments on challenging benchmarks such as PersonaGym and RoleMRC show that MOA enables an 8B model to match or even outperform strong baselines such as GPT-4o and Claude across numerous dimensions. This demonstrates the great potential of MOA in building RPAs that can simultaneously meet the demands of role knowledge, persona style, diverse scenarios, and complex multi-turn conversations.